Using SQL to Develop Database Query Proficiency: A Follow-Up Noteto Borthick, Jones, and

Blankley, Alan | _
Journal of Information Systems; Spring 2006; 20, 1; ProQuest Central
pg. 117

JOURNAL OF INFORMATION SYSTEMS
Vol. 20, No. |

Spring 2006

pp. 117137

Using SQL to Develop Database Query
Proficiency: A Follow-Up Note to
Borthick, Jones, and Kim (2001)

Alan 1. Blankley
The University of North Carolina at Charlotte

ABSTRACT: In the Spring 2001 issue of Journal of Information Systems (JIS), Borthick
et al. (2001) presented a case in which students were to query a Microsoft Access
database in order to determine the mutual assurance concerning customer service for
an automobile manufacturer and its local dealer network. [follow-up this case by pre-
senting an additional teaching note to the case that develops query strategies and
solutions for the case using Oracle and its SQL application, SQL-Plus.

I. INTRODUCTION

n the Spring 2001 issuc of Jowrnal of Information Systems (JIS), Borthick et al. (2001)

(hereafter, BJK) presented a case in which students need to query a Microsoft Access

database in order to determine the continuous assurance concerning customer service
for an automobile manufacturer and its local dealer network. After receiving inquires from
terested customers, the automobile maker was supposed to refer those inquires to the
dealer having the closest geographical proximity to the customer. After receiving the cus-
tomer referral, the dealer was then supposed to contact the customer within 48 hours. The
case involved having students first build the database and populate tables with data, then
query the database in order to determine the dealers’ response times to customers, as well
as the manufacturers’ compliance with the referral agreement. In order to meet the require-
ments of the case, students were to build the tables using Microsoft Access, then query the
databasc using Access's “query-by-example™ (QBE) capability in order to answer questions
relevant to both the manufacturer’s and dealers’ business concerns. The authors mention
that other database management system software (DBMS) may be used, and other query
languages, like structured query language (SQL). could be used as well, but the instructions
in the tcaching note were all related to thinking through the query strategy and then gen-
erating the necessary queries using QBE.

The purpose of this follow-up note is to provide guidance for using the case with the
Oracle database and its standard SQL application, SQL-PLUS." This note may prove useful
to faculty who would like to teach students SQL and/or use the Oracle DBMS. but who
may not have the proficiency required to do so, and who may not be able to invest the time

' SQL may also be used within MS Access. of course, and the guidance provided here could also be helpful in

developing the SQL. code within MS Access. This strategy may be useful for faculty at institutions without
aceess to Oracle, but it does have some limitations. First. students could use QBE instead of SQL. then turn in
the SQL code generated by Access as their own. Second. the version of SQL. used by Access is more limited
in its capabilities. Third. using certain SQL commands requires that the user interact with Access Graphical
User Intertuce (GUI) screens (creating tables using data definition queries, for example), which results in an
inefticient combination ot going back and forth between a GUI interface and an editor interface.

117

Reproduced with permission of the .copyright:-owner. Further reproduction prohibited without permissionypan,

118 Blankley

necessary to gain it. This note will provide faculty with the specific SQL instructions and
techniques necessary to answer the case questions. More than simply being a solution set.
though, this note will also allow faculty to efficiently gain the expertise needed to feel
comfortable adding SQL and/or Oracle to their syllabi. 1 will discuss not only the SQL
commands necessary o generate the correct query results, but also alternative approaches
and rationales where appropriate.

Rationale for Teaching SQL

Using the case as a means of teaching SQL offers several advantages to both faculty
and students. First, SQL is the industry-standard query language applicable to all large-
scale DBMS software. It is widely used in industry, and is not platform-specific.” Teaching
the case using SQL. then. allows faculty to provide solid training in a database language
that has widespread industry acceptance and broad business use. This exposure is important
for accounting students. The fact that many accounting information systems (AIS) texts
now include some instruction in, or discussion of, SQL underscores this point (sce, for
example. Romney and Steinbart [2003] or Gelinas et al. [2005])

Second. In addition to being the most important query language in use. SQL functions
as a data definition language, a data manipulation language, and a data communication
language. Using SQL. to address the issues in the case utilizes all these functions and allows
students to see how tables get created, keys and constraints get applied, and data get
manipulated.

Third, developing the necessary queries by using SQL. rather than a QBE interface,
reinforces the logic behind the query because students have to grapple with the relational
challenges necessary to extract the relevant information, and then express that using SQL.
This may be the most important advantage. Teaching querying using SQL is not simply
(or primarily) a matter of teaching a programming language. It is much more a matter of
focusing on the thought processes. the logic underlying the queries. than it is a matter of
concern over programming syntax. In answering the question, “How do I get the results 1
want?" students have to focus on the logic and actions required by the query and then
develop a strategy for retrieving the desired data. SQL allows them to excecute this intel-
lectual strategy without having any prior programming experience.

Fourth, using SQL within Oracle allows students to explore Oracle’s capabilities. This
has the advantage of exposing students to a robust DBMS product widely used for ac-
counting systems by large and mid-sized companies. More importantly. students can begin
to discover the functionality and controls built into a large-scale DBMS that are lacking in
desktop products. For example, when populating tables, students can build substitution
variables into their SQL statements which allow for more controlled and faster data input.

Taken together, using SQL and Oracle to satisfy the requirements oft BJK provides
faculty with one means of achieving the ““information use™ objectives outlined in Borthick
(1996). The case itsell encourages students to decide what information is relevant to ad-
dressing the business problems presented in the case. while the focus on SQL requires that
students gain experience first developing, then extracting the necessary information using
the data definition language (DDL), data manipulation language (DML). and data query
language (DQL) common to most. if not all. large-scale AlSs.

While variations in SQL. versions do exist. the basies are the same across multiple plattorms,

Journalof-hfornation Systents Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 10 Develop Database Query Proficiency 119

Case Requirements

The case requires students to build six tables and then query those tables in order to
find the solutions 1o questions posed at the end of the case. Only five of the tables are
necessary to answer all the questions. The fact that there is an unnecessary table included
in the database may lead to discussion about efficient database design. It is not my purpose
here to discuss the design of the database. but rather to provide SQL statements that address
all the issues and to point out additional items of interest concerning SQL or Oracle that
may be brought to bear on the case. For that reason, only the five tables from BJK necessary
for querying purposes are presented in Tables [-5.%

Once the students have built the tables. they need to develop a sequence of queries that
together address the auto manufacturer's concerns as to whether dealers are complying with
their (the manufacturer’s) expectations of a 48 hour response time to customer inquiries,

I1. METHODS

Logging on to Oracle and Basics

Before any work can commence on the case. users must first establish accounts for
themselves and their classes. Generally, this can be accomplished by calling the university’s
IT services department and requesting an account. It may also be possible to set up an
account using the web. depending on how cach university's account maintenance procedures
work. Once you have an account. you will be assigned a username. a password (which
may be changed). and a “"Host String™ by the systems administrator. Key each of these
into their respective locations on the start-up dialog box for SQL-Plus. See Figure 1.

After clicking on "OK.” you will arrive at the SQL prompt, which looks like this:

sqQL>

SQL-Plus is a line editor, and as such, is unfriendly and unforgiving. Fortunately there
is an alternative to using the line editor, so any mistakes made while keying can be fixed
quickly and casily. You can invoke the editor after you have begun writing a command at
the SQL prompt. For example. if you type in "SELECT™ at the SQL prompt, then press

FIGURE 1
SQL-Plus Log On Screen

Log On

User Name:
Password:

Host String:

The original tables from the case included seven digit customer id and dealer id numbers. and nine digit referral
ids. T dropped the leading zeros for simplicity.

Journal of Information Svstems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Blankley

120

WO 10U @) £ ZU[[e
wod [rewnoy @9/ (p|o3
wod'[0' @ §OOMO]
woo' [0’ @ ()86OUBAL

TrSe-686 (0LL)
8696-8¥¢S (0LL)
8688-11S (YO¥)
€799-8+¢S (¥0¥)

1269-886 (0LL)
1269-6L6 (OLL)
SvTT-L9S (YOP)
CL8Y-9L8 (YOP)

£0£0€ eluepy
09¢0€ Bluepy
P1€0¢ eluepy
Pre0e ejuepy

"PY UOSIYJIN LTSI

1S 221Yorad S86T
1 Yueqing 6T
Py UOpUOT O1L

uady Ape) 9pSTre
SBWOY |, [LR], 6£STYE
[[oM0] [arueq CTCTre
Suoy ueky TISTPE

$SaIppy [1ewy

WOl Jduoyq

}I0AA duoyd

apo)) 1504 A1)

J3wojsn))
I 4'T4VL

19201S

JwieyN Jser] dweN JsIf (] Jdwolsn)

1 Jdwoisn)) 43y Arewig

Journal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 1o Develop Database Query Proficiency 121

TABLE 2
ReferralToDealer
Primary Key: ReferrallD
ReferrallD) Customer[D Dealeril RefDateTime
10345 342512 24145 11710799 10:00 AM
10352 342525 16287 11/12/99 1:15 PM
10363 342539 37269 11715799 10:00 AM
10379 342546 405718 12/11/99 11:35 AM
10382 342512 24145 11712799 11:00 AM
10394 342525 16287 11/15/99 2:20 PM
10407 342546 405718 11725799 10:00 AM
TABLE 3
Dealer
Primary Key: DealerID
DealerID Name Street City PostCode Phone
16287 Buckhead Auto 3126 Piedment Rd Atlanta 30305 (404) 261-1851
23718 Neal Pope Motorcar 4420 Buford Hwy Atlanta 30341 (770) 216-9700
24145 Paul Light 4125 Piedmont Rd Atlanta 30342 (404) 261-1851
35284 Afford Auto 3350 Cumberland Rd. Atlanta 30339 (404) 303-1400
37269 Bob Motoring 330 Forrest Rd Atlanta 30349 (404) 361-3832
405718 Town Touring 141 Piedmont Ave. Atlanta 30303 (404) 659-3673
TABLE 4
DealerResponseToReferral
Primary Key: ReferrallD
ReferrallD DealerID ResDateTime PhoneResponse EmailResponse
10345 24145 11/12/99 11:30 AM Yes Yes
10352 16287 11/12/99 4:00 PM No Yes
10363 37269 11/15/99 4:30 PM Yes No
10379 405718 12/11/99 4:00 PM No Yes
10382 24145 11/15/99 12:20 PM No Yes
10394 16287 11716799 9:00 AM Yes Yes
10407 405718 11/25/99 1:00 PM No Yes

enter, you will receive an error message and be returned to the SQL prompt. At this point,
type in “ed™ (for editor). and the database will open Microsoft’s Notebook text editor, and
create a file in the bufter called afiedr.buf. You can key in the code using Notebook, close
it when finished, and the database will then display the code at the SQL prompt. Key in a
forward slash (/), hit enter, and the database will then process the code. This process is
much easier to use when writing SQL code. and vastly more efticient when correcting
errors than using the SQL-Plus line editor.

Journal of Information Systems, Spring 2006

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

122 Blunkley

TABLE 5
EmailResponse to Referral®

Primary Key: ReferrallD

ReferrallD DealerID EmailAddress ResDateTime
10345 24145 ryan(0983 @aol.com 11/12/99 11:30 AM
10352 16287 low008 @aol.com 11/15/99 1:36 PM
10379 405718 allen23@mci.com 12/11/99 5:00 PM
10382 24145 ryan0983 @aol.com 11/15/99 12:20 PM
10394 16287 low008 @aol.com 11/16/99 5:00 PM
10407 405718 allen23@mci.com 11/25/99 1:00 PM

“In the EmailResponseToReferral table, 1 have corrected what appears to be a typographical error in BJK. In the
table presented in the original case, the date/time for referral ID 10394 was 11/15/99 5:00:00 PM. This would
place the email referral 16 hours before the dealer self-reported referral, which is out of character for this
dealer. Given that BJK also used 11/16/99 5:00:00 PM date and time in their teaching note, I regarded the
11/15/99 date appearing in the table in the case as a typographical error. The solutions I present use the
11/16/99 date for the time/date calculations.

After entering the database. the SQL prompt is all you will sce on screen. apart from
some information about the version of Oracle being used and the date, and it is where you
will begin keying in the SQL commands you wish to use. To exccute the command once
it's been keyed in, you must either end the command with a semi-colon and press enter,
or go to a new line, enter a forward slash (/). and then press enter. Either technique will
tell the database to process the SQL code. For example. to see a list of tables that have
already been created, you would enter the following command at the SQL prompt:

SQL>SELECT table_name FROM user_tables;

(In this example. table_name is the actual expression you should use. I am not using it here
as a convention to represent some other, specific table name).

After pressing enter, the database will return a list of table names of tables that have
previously been created. For convenience, I have capitalized SQL keywords here. but keep
in mind that Oracle is not case sensitive, and the code may be either upper-case or lower-
case, or any combination.

Using SQL to Build Tables

The first task required is to build the tables. To build the customer table, you will need
to define the fields. the field type for cach field. and the size of the field. if required by the
data type. The following code creates the customer table and establishes the customer id
as the primary key:

CREATE TABLE Customer

(CustomerID NUMBER (6,00 CONSTRAINT customer_custid_pk PRIMARY
KEY,

FirstName VARCHAR (15),

LastName VARCHAR (15),

Street VARCHAR (25),

City VARCHAR (15),

PostCode CHAR (5),

Journal of Information Systems, Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 10 Develop Database Query Proficiency 1

9
)

PhoneWork VARCHAR (15),
PhoneHome VARCHAR (15),
EmailAddress VARCHAR (25))

The first line above uses the create table command to create the table, and then names
the table “*Customer.” The second line identifies the first field to be created, the CustomerlD
ficld. and assigns it a Number data type, with a size of six digits in total. When assigning
size to number fields in Oracle. you can specify the “precision™ and “scale™ of the number
within parentheses as I have done above. The first number identifies the **precision.” which
18 the total number of digits allowable for the number: in this case. six. The second number
identifies the “scale.”™ which is the number of digits to the right of the decimal: in this
case, zero. So. for example, a field defined as NUMBER (5.2). would allow 123.45 as a
legitimate value. but not 1234.5 or 1234.56.

Following the size definition. T have added a constraint. Constraints in Oracle apply
controls to the data, and may be applied at the ticld level (as 1 have done) or at the table
fevel (which 1 do in the next example). Constraints may be one of the five types listed

below:

Constraint Type Abbreviation Function

Primary Key pk Sets a column or columns as primary key

Foreign Key fk Makes a column a foreign key

Check cc or ck Checks the field to be sure data entry conforms to a defined
condition

Not null nn Ensures that the field has a value in it. Will not let field be blank

Unique uk Requires that every value in a column or columns be unique

Any constraint may be added to a field except the foreign key constraint, which must be
added at the table level. There is no need in this case to define foreign keys. because
solutions can be determined without them. but it is useful to have students create at least
one so they can actively participate in developing a vital control feature over the database.
Note that to add a constraint, you need to identify it with the CONSTRAINT keyword.,
followed by the constraint name (in this case. the constraint name is customer_custid_pk).
and then the keywords identifying the type of constraint being added (in this case. PRI-
MARY KEY).

Each of the next lines of code creates the remaining fields in the customer table. and
they are defined as VARCHAR or CHAR ficlds. VARCHAR fields store variable-length
character data and have a maximum size limit of 4000 characters. CHAR fields store fixed-
length character data and are limited to 2000 characters. The code necessary to create the
dealer table is very similar to what was used 1o create the customer table and can be adapted
with relatively simple moditications for that purpose.

Creating the ReferralToDealer Table

The ReferralToDealer table and the other remaining tables can be created in a similar
manner to the customer table as well. but will require changing the field names and types
as appropriate. [present the code necessary to create the ReferralToDealer table below. In
it Fillustrate how to define a foreign key constraint and set up a date field.

CREATE TABLE ReferralToDealer

(ReferrallD NUMBER (5) CONSTRAINT referraltodealer_refid_pk PRIMARY

KEY,

Jowrnal of Information Svstems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

124 Blankiey

CustomerID NUMBER (6),

DealerID NUMBER (6),

RefDateTime DATE,

CONSTRAINT referraltodealer_custid_fk FOREIGN KEY (CustomerlID)
REFERENCES Customer (CustomerlD));

As you can see, there really isn’t much involved in setting up a date ficld. You simply
identify the field as a date field and move on: you do not need to specify a size, as the
size is predetermined. The real issue—in fact, the critical technical problem in this case—
comes when trying to populate the table with both the date and time in this single field. [
address that issue in the next section. I should mention here that there is no requirement
that the Referralld, CustomerID, and DealerID all be number fields. You can make them
character fields or VARCHAR fields as well. 1 have found. however, that it minimizes the
problems students have with the assignment if you make them all similar type ficlds. By
making them all number fields, or VARCHAR fields, students will be less likely to define
a field as, say. a number in one table and the same field as a CHAR in another table,
which may subsequently lead to trouble when they begin querying the database. Note. too,
that it is not always nccessary to identify the size of number fields with both precision and
scale. In this case, 1 chose to identify only precision. Since none of the numbers have
decimals. it will not create a problem. Finally, note the foreign key constraint reference. It
first begins with the CONSTRAINT keyword. then follows with the constraint name (re-
ferraltodealer_custid_fk), the FOREIGN KEY keyword, the field name of the foreign key,
and then a REFERENCES statement followed by the ficld it references in parentheses,
which tells the database which table and ficld represent the corresponding primary key
refercnce.

Populating Tables

Once the tables have been built, it is necessary to populate them with data. While this
is a relatively easy task using Access, it is more difficult to accomplish using Oracle because
of the requirement that both time and date be stored in a single field. In fact, storing the
time and date in a single field is critical to successful completion of the case. and it is not
intuitively obvious how to do this using Oracle.

It is usetul here to point out to students that when creating the tables, we utilized SQL's
data definition language (DDL) capabilities. When populating tables, or when moditying
data, we are taking advantage of SQL's data manipulation language (DML) strengths.

There are several ways to populate tables using SQL. The simplest way is to create
SQL DML code and then modify it for cach line. The second way, using substitution
variables, requires students to write an interactive SQL script that creates user prompts,
which they can then use to input data. By using substitution variables, students learn to
appreciate first-hand the purpose and need for data input controls, as well as the increase
in efficiency atforded by the technique.

To populate the Customer table using substitution variables, I present and discuss the
approach below.

INSERT INTO Customer (CustomerID, FirstName, LastName, Street, City,
PostCode, PhoneWork, PhoneHome, EmailAddress)

VALUES(&CustomerID, ‘&FirstName’, ‘&LastName’, ‘&Street’, ‘&City’,
‘&PostCode’, ‘&PhoneWork’, ‘&PhoneHome’, ‘& EmailAddress’)

Jowrnal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 1o Develop Database Query Proficiency |

t9
N

The script begins with the INSERT INTO command, and is followed by the name of
the table you wish to populate. A list of the field names within parentheses, all separated
by commas. follows. After this, we have to identify the particular data values to be inserted.
but in this case, rather than identifying the data values themselves. we identify the field
preceded by an ampersand. CHAR, VARCHAR. and DATE fields all need to be surrounded
by single quotes as shown above. NUMBER ficlds do not need to be surrounded with single
quotes.

When the user runs the script, Oracle returns user prompts asking for each particular
data value as shown below.

sqQL> /
Enter value for customerid: 342512
Enter value for firstname:

The example above shows the first data item entered at the prompt, followed by the prompt
for the second data item (firstname). After keying in cach value. the user presses enter then
continues this routine until finished with the record. The entire process for entering the
second Customer record is presented in Figure 2.

When finished, Oracle responds with 1 row created.” To add another record. all the
user needs to do is to run the script again. This way, data input can be accomplished
efficiently, while the substitution variables help minimize input errors.

To illustrate how to populate tables without using substitution variables. and how to
handle the critical date/time issue. I present the SQL code below for inserting the first
record of the ReferralToDealer table.

FIGURE 2
Substitution Variable Code and Input for the Customer Table

SQL> ed
Wrote file afiedt.buf

1 INSERT INTO Customer (CustomerID, FirstName, LastName, Street, City, PostCode,
2 PhoneWork, PhoneHome, EmailAddress)
3 UALUES(&CustomerID, '&FirstName"', ‘&lLastName®, ‘&Street’, ‘&City', '&PostCode’,
4» ‘'&PhoneWork', '&PhoneHome', ‘&EmailAddress')

sQL> /

Enter value for customerid: 342525

Enter value for firstname: Daniel

Enter value for lastname: Lowell

Enter value for street: 225 Burbank Dr.

Enter value for city: Atlanta

Enter value for postcode: 38314

old 3: UVALUES(&CustomerID, ‘&FirstName', ‘&LastName', ‘&Street’, '&City', '&PostCode’,

new 3: UALUES(342525, 'Daniel’, ‘'Lowell', '225 Burbank Dr.', 'Atlanta‘', '30314',

Enter value for phonework: (404) 567-2245

Enter value for phonehome: (404) 514-8898

Enter value for emailaddress: low868R@aol.com

old 4: ‘&PhoneWork', ‘&PhoneHome', ‘&EmailAddress’)

new 4 "(uO4) 567-2245', '(404) 514-8898', 'low@OS8Raol.com')

1 row created.

Journal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

126 Blankley

INSERT INTO ReferralToDealer (ReferrallD, CustomerID, DealerID,
RefDateTime)

VALUES (10345, 342512, 24145, TO_DATE(‘10-Nov-99 10:00:00" , ‘DD-MON-RR
HH24:MI:SS’))

As in the example above, the statement begins with the INSERT INTO command,
followed by a list of the fields in the table. It differs in the VALUES statement. however.
in that it lists the specific values for each corresponding field. In this case. the first three
values corresponding to Referralld, Customerld. and Dealerld, are not surrounded by quo-
tation marks because they are all number fields. Note that in order to place both the referral
date and referral time in one ficld. it is necessary to use the TO_DATE command. After
the TO_DATE command, we open parentheses and then identify the date and time using
the exact format above. Dates must be input in Day-Mon-Year format. The time is input
according 1o a 24-hour clock in an hour-min-sec format. After surrounding the date and
time values with single quotes, it is necessary to identify the format of the input for Oracle
using *DD-MON-RR HH24:MI:SS". Failure to specify a 24 hour clock (with a =247 after
HH) will result in confusion between AM and PM in the database. The actual input is
illustrated in Figure 3.

After executing the SQL statement, Oracle will return a message saying 1 row cre-
ated.” To modify the statement, reopen the editor, change the data values. and then execute
the SQL statement again. Each subsequent row can be entered in the same manner. Note
that it is not possible to follow one INSERT INTO statement with multiple VALUES
statements. The data from all other tables can be input using either of these two approaches.

PART 1: CASE QUESTIONS CONCERNING AUTOMOBILE
DEALER COMPLIANCE
In the first part of the case. the auto manufacturer wishes to query the database to
determine how well its local dealers are complying with the requirements that they respond
in a timely manner to customer referrals. The manufacturer had been getting complaints
from some potential customers that they were not getting contacted in a timely manner.
and so wanted to determine the length of time from the referral to the customer contact.

Case Question 1: Determine response times for dealer-reported responses.
Determining the dealer-reported response times involves joining the Dealer-
ResponseToReferral table with the ReferralToDealer table and subtracting the referral date

(continted on next page)

FIGURE 3
Code to Populate Tables with Date and Time Field
SQL> ed
Wrote file afiedt.buf
1 INSERT INTO ReferralToDealer (ReferrallD, CustomerID, DealerlID, RefDateTime)
2% UALUES (10345, 342512, 24145, TO_DATE(' 18-Nov-99 10:00:00"', 'DD-MON-RR HH24:MI:SS'))
sqQL> /

1 row created.

Journal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 10 Develop Database Query Proficiency 127

and time from the response date and time. Since the results will be in days. it is necessary
to multiply the difference by 24 in order to place the answer in hours. While not specifically
required, it is not a bad idea to have students retrieve the referral date and time and the
response date and time as well, in order to check the difference calculation. The following
SQL code will produce the desired results.

SELECT ReferralToDealer.ReferrallD, DealerResponseToReferral.DealerID,

TO_CHAR(RefDateTime, ‘DD-MON-RR HH24:MI:SS’) AS ReferralDate,
TO_CHAR(ResDateTime, ‘DD_MON-RR HH24-MI:SS’) AS ResponseDate,

(DealerResponseToReferral.ResDateTime — ReferralToDealer.RefDateTime)*24
AS Response_Time

FROM DealerResponseToReferral, ReferralToDealer

WHERE DealerResponseToReferral.ReferrallD = ReferralToDealer.ReferrallD

In the SQL statement above, I request the database to return the ReferrallD. the
DealerlD. the referral date and time, the response date and time, and the difference between
the referral and response times. Since there are multiple tables, | used the tablename.
ficldname convention in identifying the fields in the SELECT statement. By detault, Oracle
displays only the date when you select a date/time field. so in order to view both the date
and time. it is necessary to use the TO_CHAR command. which converts the field into
characters that it displays. The TO_CHAR command is immediately followed by tield name
and format instructions for the date and time within parentheses. Outside the parentheses,
I use the AS command to apply a field alias. The AS command allows you to rename a
ficld (or table) for convenience. The FROM clause lists the tables from which the data are
to be retrieved. and finally, the WHERE clause formally joins the two tables based on the
common ficld between them.

At this point, it is obvious that the long table names are unwieldy and inconvenient.
Fortunately, Oracle allows you to use table aliases to reduce the unnecessary keying required
by long table names. The following code is identical to the code above with the exception
that it illustrates the use of table aliases:

SELECT r.ReferrallD, d.DealerID,

TO_CHAR(RefDateTime, ‘DD-MON-RR HH24:MI:SS’) AS ReferralDate,
TO_CHAR(ResDateTime, ‘DD_MON-RR HH24-MI:SS’) AS ResponseDate,

(d.ResDateTime - r.RefDateTime)*24 AS Response_Time

FROM DealerResponseToReferral d, ReferralToDealer r

WHERE d.ReferrallD = r.ReferrallD

Figure 4 illustrates the code and results from SQL Plus:

Generally. table aliases are used to reduce keystrokes; there is no requirement that they
be a single letter, but the shorter they are, the better. Notice in the example above, 1 replaced
the DealerResponseToReferral table references with the letter . and the ReferralToDealer
table references with the letter r. All that is required to enact the alias is to place the alias
immediately after the table name in the FROM clause. To minimize the keying required by
the long table names, 1 will illustrate all remaining solutions using table aliases.

Case Question 2: Find the average response time by dealer for self-reported times.
The following SQL query will produce the desired results:

Journal of Information Systems, Spring 2006

128 Blankley

FIGURE 4
SQL Code and Results Displaying Both Date and Time in Response Time

SQL> SELECT r.Referralld, d.DealerlID,

2 TU_CHRR(ReFDateTime, 'DD-MON-RR HH24:MI:SS') AS ReferralDate,
3 TO_CHRR(RESDateTimE, 'DD-MON-RR HH24:MI:SS') AS ResponseDate,
y (d.ResdateTime-r .RefDateTime)*24 AS Response_Time

5 FROM DealerResponseToReferral d, ReferralToDealer r
6 WHERE d.ReferrallD=r.ReferrallD;

REFERRALID DEALERID REFERRALDATE RESPONSEDATE RESPONSE_TIHME
10345 25145 10-NOU-99 10:080:80 12-NOU-99 11:30:80 49.5
18352 16287 12-NOU-99 13:15:00 12-NOU-99 16:00:00 2.75
108363 37269 15-NOU-99 10:00:00 15-NOU-99 16:30:00 6.5
10379 405718 11-DEC-99 11:35:00 11-DEC-99 16:00:00 4.41666667
10382 24145 12-NOU-99 11:80:00 15-NOU-99 12:20:00 73.3333333
10394 16287 15-NOU-99 14:20:080 16-NOU-99 09:00:00 18.6666667
10407 485718 25-NOU-99 10:00:00 25-NOU-99 13:00:00 3

7 rows selected.

FIGURE 5
SQL Code and Output Displaying Average Dealer Response

SQL> SELECT d.DealerID, AUG(d.ResDateTime - r.RefDateTime)x24 AS AugResponse
2 FROM DealerResponseToReferral d, referralToDealer r
3 WHERE d.ReferrallD = r.ReferrallD
4 GROUP BY d.DealerlID
5 /

DEALERID AUGRESPONSE
16287 10.7083333
24145 61.4166667
37269 6.5

405718 3.70833333

SELECT d.DealerID, AVG(d.ResDateTime — r.RefDateTime)*24 AS AvgResponse
FROM DealerResponseToReferral d, referralToDealer r

WHERE d.ReferrallD = r.ReferrallD

GROUP BY d.DealerID

Figure 5 displays the query and results:

In order to find the average response time by dealer. it is necessary to use the AVG
function, one of Oracle's built-in functions. In this query, I select the DealerID, and then
calculate the difference between the referral date/time and the response date/time. Taking
the average of the difference is simply a matter of preceding the parentheses with AVG. |
then apply a field alias called AvgResponse to the field.

Since the question asks for dealer response averaged by dealers. it is necessary 10
include 2 GROUP BY clause at the end of the SQL statement in order to calculate averages
for each dealer ID. If you include other fields in the select statement besides the field(s)
you are grouping on (in this case, DealerID) and the field to be averaged, you will get an
error message from Oracle saying that the field is not part of an aggregate function. It is

Journal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL to Develop Database Query Proficiency 129

important to understand that when using Oracle’s group functions (Sum, Count. Avg. Min,
and Max). you may not include fields in the SELECT statement that are neither the grouping
field(s) nor the evaluated field. I mention this because students are likely to have trouble
with the group functions, and this is the most common error they make.

Case Question 3: Determine response times for dealers’ emailed responses

This question requires students to retrieve dealers’ email response times in the same
manner as they retrieved self-reported response times in Question 1. The solution is nearly
identical to the solution in Question 1 except that the EmailResponseToReferral table is
referenced rather than the DealerResponseToReferral table. Since the solution required is
similar to Question I, Figure 6 illustrates the query and presents the results.

Note that before keying in the query, I set the column width for the Response_Time
ficld to be equal to three digits. and two decimal places (Col Response_Time FORMAT
999.90) The COL statement allows me to format the decimal places for the Response_Time
field to two digits. presenting cleaner results than the results presented in case Questions |
and 2.

Case Question 4: Find the average response time for dealers’ emailed responses

This guestion asks students to find the average email response time grouped by dealer,
and 1s very similar to Question 2 above. Again. the only aspect of the solution that must
change is the reference to the EmailResponseToReferral table rather than the Dealer-
ResponseToReferral table. In the solution below. I changed the table reference, as well as
the ficld alas for the average email response field. The solution and results are presented
in Figure 7.

Case Question 5: Compare dealers’ self-reported response times to dealers’ emailed
response times

This question requires students to refer to both the DealerResponseToReferral table and
the EmailResponseToReferral table. The business reason for making the comparison is to
compare dealers™ reported response times with some objective measure of their actual re-
sponse times (using the email time stamps as proxies for the true response times). If dealers’
self-reporting response times are substantially carlier than the email response times, then it
may be that dealers are not complying with the manufacturer's policies and are misrepre-
senting their actual behavior. Of course it may be that dealers are not careful to report
accurate times so that a dealer self-reported response may be reported as before, or after,
the email response time. The easiest way to make the comparison is for students to subtract
the ResDateTime field reported in the EmailResponseToReferral table from the Res-
DateTime ficld reported in the ResponseToReferral table and calculate the number of hours
by which the two times differ. If the resulting numbers are large positive values, then the
dealer may be misrepresenting the timeliness of its response.

Figure 8 displays the query and results:

In the query above. I select the Referralld and Dealerld from the DealerResponse-
ToReferral table, and the ResDateTime fields from both the DealerResponseToReferral and
EmailResponseToReferral tables. These date/time selections are defined in the TO_CHAR
statements, so that the date and time of each response will display. Line 4 above performs
the calculation of the difference in reported response times, and line 7 sorts the results in
descending order first by the Time_Difference ficld. then by the Dealerld field. Note that
the results indicate that for dealer 16287. reported response times were 69.6 hours and eight
hours before the corresponding actual email responses to the customer. If email responses

Journal of Information Svstems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

130 Blankley

FIGURE 6
SQL Code Used to Reformat Response Time Column and Calculate Dealer Response Times

ISQL> col Response_Time FORMAT 999.90
SQL> SELECT r.ReferrallD, e.DealerlID,

| 2 TO_CHAR(r.RefDateTime,'DD-MON-RR HH24:MI:SS') AS ReferralDate,
3 TO_CHAR(e.ResDateTime, ‘DD-MON-RR HH24:MI:SS') AS ResponseDate,

‘ 4 (e.ResDateTime - r.RefDateTime)»24 AS Response_Time

| 5 FROM EmailResponseToReferral e, ReferralToDealer r

| 6 WHERE e.ReferrallD = r.ReferrallD

; 7 7/

FEFERRRLID DEALERID REFERRALDATE RESPONSEDATE RESPONSE_TIME

| 10345 25145 10-NOU-99 10:00:00 12-NOVU-99 11:30:00 49 .50
10352 16287 12-NOU-99 13:15:00 15-NOV-99 13:36:00 72.35%
10379 405718 11-DEC-99 11:35:00 11-DEC-99 17:00:00 5.42
10382 24145 12-NOU-99 11:00:00 15-NOU-99 12:20:00 73.33
10394 16287 15-NOU-99 14:20:00 16-NOU-99 17:00:00 26.67
10407 405718 25-NOVU-99 10:00:00 25-NOVU-99 13:00:00 3.00

6 rows selected.

accurately capture the true response times, then this dealer is misreporting its selt-reported
response times.

Case Question 6: Find the average time difference between dealers” self-reported
and emailed responses

Here again it is necessary to use Oracle’s built-in functions to find the solution. Since
the question secks o determine the average time difference by dealer, it is necessary to
group by dealer while using the AVG function: The following query and results illustrates
one approach to the question (Figure Y).

In Figure 9. I demonstrate how to join three tables and group on multiple ficlds. Line
1 selects the Dealer ID field from the DealerResponseloReferral table, the dealer name
from the Dealer table, and then caleulates the average response difference (in hours)y be-
tween the ResDate’lime fields Trom the DealerResponseloReferral and the Email-
ResponselToReferral wables. Note that, in order to convert the caleulation to positive num-
bers, T used the absolute value command (ABS) before the AVG function. Sinee three tables
were joined, two primary key/forcign key links were specified in line 4 Finally. line S
indicates that the data were grouped on two ficlds. Oracle allows grouping on multiple
ficlds so long as the fields pertain o the same data item (in this case, the average time
difference). Oracle groups according to the unigue combination of ficlds within the GROUP
BY statement.

PART 2: CASE QUESTIONS CONCERNING MANUFACTURER COMPLIANCE

In this section of the case, the veritication cmphasis shifts from the auto manufacturer,
which in Part 1 was attempting to verify that dealers responded to customer inquiries within
its predetermined parameters, to the dealers, who are attempting o verily that the manu-
facturer is making customer referrals to the nearest dealer to the customer. 'The method
used in the case 1o determine geographical proximity is a comparison of the dealers” postal

Jowrnal of Information Svstems, Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 1o Develop Datubase Query Proficiency 131

FIGURE 7
SQL Code Used to Calculate Average Email Response Times

SQL> SELECT e.DealerID, AUG(e.ResDateTime - r.RefDateTime)*24 AS AvgEmailResp
2 FROM EmailResponseToReferral e, referralToDealer v
3 WHERE e.ReferrallD = r.ReferrallD
4 GROUP BY e.DealerID;

DEALERID AVGEMAILRESP
16287 49.5083333
24145 61.4166667

405718 4.20833333

FIGURE 8
SQL Code Used to Calculate the Difference between Dealer Response and Email Response

SQL> ed
Wrote file afiedt.buf

1 SELECT d.ReferrallD, d.dealerid,

2 TO_CHAR(d.ResDateTime, 'DD-MON-RR HH24:MI:SS') AS DealerTime,
3 TO_CHAR(e.ResDateTime, ‘'DD-MON-RR HH24:MI:SS') AS EmailTime,
4 (e.ResDateTime-d.ResDateTime)=24 AS Time_Difference

5 FROM DealerresponseToReferral d, EmailResponseToReferral e

6 WHERE d.ReferrallD=e.ReferrallD

7% ORDER BY Time_Difference DESC, d.dealerid DESC

sqQL> 7/

REFERRALID DEALERID DEALERTIME EMAILTIME TIME_DIFFERENCE
10352 16287 12-NOV-99 16:00:00 15-NOU-99 13:36:00 69.6
10394 16287 16-NOU-99 09:00:00 16-NOU-99 17:00:00 8
108379 405718 11-DEC-99 16:00:00 11-DEC-99 17:00:00 1
10407 405718 25-NOU-99 13:00:00 25-NOU-99 13:00:00]
10345 24145 12-NOU-99 11:30:00 12-NOU-99 11:30:00 5}
10382 24145 15-NOVU-99 12:20:00 15-NOU-99 12:20:00 (5}

6 rows selected.

codes with those of their customers. While the case asks students o consider alternative
ways of determining the proximity of dealers and customers in Part 2B (BJK), and presents
a postal code map for that purpose. the initial case questions themselves focus on deter-
mining the numerical difference between postal codes and using this difference as a proxy
for the geographical distance.

Case Question 1: For each referral, determine the difference between the postal
codes of the customer and the dealer receiving the referral.

The first question asks students to determine the difference between the customer's
postal code and the postal code of the dealer to which he or she was referred. To find the
solution, students will need to query the Customer table to find the customer’s postal code,
the Dealer table, to find the dealer’s postal code. and the ReferralToDealer table to find

Jowrnal of Information Svstems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Blankley

FIGURE 9
Average Differences between Dealer and Email Responses

SQL> ed
Wrote file afiedt.buf
1 SELECT d.DealerID, dlr.Name, ABS{AVG(d.ResDateTime-e.ResDateTime)x*24)
2 AS ''Average Response Difference”
3 FROM DealerResponseToReferral d, EmailResponseToReferral e, Dealer dlr
4 WHERE d.ReferrallD = e.ReferrallD and e.DealerID = dlr.DealerID
Sx GROUP BY d.DealerID, dlr.Name
sqQL> /
DEALERID NAME Average Response Difference
16287 Buckhead Auto 38.8
24145 Paul Light 0
4085718 Touwn Touring .5

the referral linking the customer to the dealer. Figure 10 presents one way of retrieving
and formatting the desired information:

The above query selects the referral id. the customer’s first and last name. the dealer’s
name, the customer and dealer postal codes, and then calculates the numerical ditference

between the respective postal codes.
I took the opportunity with this query to illustrate certain useful formatting and querying
techniques. First, the four COL statements are used to format the results. The COL keyword

FIGURE 10
Calculation of Postal Code Differences Showing Column Formatting
and Concatenation Techniques

SQL> COL Customer FORMAT a7

SQL> COL Dealer FORMAT ai15

SQL> CcOL "‘Cust 2ip" FORMAT a9

SQL> COL "Dealer Z2ip' FORMAT a1@

SQL> SELECT r.ReferrallD, c.FirstName || * ' || c.LastName AS Customer,

2 d.Name AS Dealer, c.PostCode AS "Cust Zip", d.PostCode AS ‘‘Dealer Zip",
3 c.PostCode-d.PostCode AS ZipDiff

4 FROM Customer c, Dealer d, ReferralToDealer v

5 WHERE c.CustomerID = r.CustomerID AND d.DealerID = r.DealerID

6 ORDER BY ZipDiff ASC;

REFERRALID CUSTOMER DEALER Cust 2ip Dealer 2ip ZIPDIFF
104087 Cathy Allen Town Touring 30303 308303 0
10379 Cathy Allen Town Touring 30303 30303 [¢]
10382 Ryan Hong Paul Light 30344 30342 2
10345 Ryan Hong Paul Light 30344 30342 2
10394 Daniel Lowell Buckhead Auto 30314 30305 9
10352 Daniel Lowell Buckhead Auto 30314 30305 9
10363 Terrel Thomas Bob Motoring 30360 30349 11

7 rows selected.

Journal of Information Sysiems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

"
(8]

Using SQL 1o Develop Database Query Proficiency 1

followed by the field name. the FORMAT command. and the desired width, formats the
specified column to the desired width. For example, the “COL Customer FORMAT 417"
statement formats the resulting field named customer to 17 alpha characters wide. Second.
in the first line of the SELECT statement. 1 join the LastName field from the customer
table together to the FirstName field from the customer table in a process known as ““con-
catenation.” To concatenate fields in Oracle, you use the concatenation operator, the two
vertical bars (| [). after the first field and before the second field you wish to join. In between
the two concatenator symbols, I placed two single quotation marks with a space between
them. This places a space between the two fields in the query results. You can concatenate
any fields and place any combination of spaces or characters between them following this
general approach. T then renamed the concatenated field “Customer.”” Third. the field alias
for the customer postal code is surrounded by double quotation marks because there is a
space in the alias. Note that the alias for dealer name (d.Name in line 2 is given the alias
“Dealer™) has no quotation marks, while the alias for both the customer postal code and
the dealer postal codes are surrounded by double quotation marks because they both have
spaces in their aliases, “Cust Zip™ and “*Dealer Zip." respectively. Finally, the results were
sorted in ascending order by the postal code difference.

The results indicate that some customer referrals are to dealers within the same postal
codes. while others differ by what appear to be relatively large numbers. By themselves.
however. there is no way to put the results in perspective. Is 11 a large difference, or is it
a relatively small difference?

Case Question 2: For each referral, determine the minimum postal code difference
over all dealers.

This question asks students to compare. for cach referral, the customer postal code with
every dealer’s postal code, and then to find the dealer that minimizes the difference for that
particular referral. In effect. it places the results of the previous query in context.

A simple modification of the previous query will create the combination of all dealers’
postal codes compared to the customer’s postal code for each referral. Since there were
seven referrals and six dealers, there will be 6 X 7 rows in the results. In order to get the
database to relate all combinations of referral and dealer, it is only necessary to drop the
Join between the dealer and the referral in the WHERE statement. Leaving the clause
WHERE c.CustomerlD = r.CustomerID joins the referral to the customer. Since there is
now no corresponding join between the dealer and the referral, all the dealers will be related
in the results to each customer referral. Figure |1 displays the SQL query and the results.

The results in Figure 11 answer the question because the minimum distance for cach
referral can be obtained by scanning the results. but it is hardly an elegant solution. The
query can, and should, be further refined to present only the minimum values in a much
more efticient manner.

To modify the query further, drop all the fields from the SELECT statement except the
ReferrallD and the calculation of the difference. To find the minimum value of all dealer/
referral combinations, simply express the calculation field as MIN(ABS(c.PostCode —
d.PostCode) and give it an alias. Finally, add a GROUP BY statement after the WHERE
statement since we want to retrieve the minimum postal code difference for each referral.
Figure 12 illustrates the modified query with results.

Achicving this result answers the case question directly, and is certainly a more direct
answer than the carlier result.

Jowrnal of Information Svstems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Blanklex

Preliminary SQL Code Used to Determine Minimum Postal Code Differences

FIGURE 11

Across All Dealers

SELECT r.ReferrallD, c.FirstName Il ' ' Il c.LastName AS Customer,
2 d.Name AS Dealer, c.PostCode AS "Cust Zip", d.PostCode AS "Dealer Zip",
3 ABS(c.PostCode-d.PostCode) AS ZipDiff
4 FROM Customer c, Dealer d, ReferralToDealer r
5 WHERE c.CustomerlID = r.CustomeriD
6 ORDER BY r.ReferrallD ASC, ZipDiff ASC;

REFERRALID

CUSTOMER

Daniel
Daniel
Daniel
Daniel Lowell

CUSTOMER
Daniel Lowell
Terrel Thomas
Terrel Thomas
Terrel Thomas
Terrel Thomas
Terrel Thomas
Terrel Thomas
Cathy Allen
Cathy Allen
Cathy Allen
Cathy Allen

CUSTOMER
Cathy Allen
Cathy Allen
Ryan Hong
Ryan Hong
Ryan Hong
Ryan Hong
Ryan Hong
Ryan Hong
Daniel Lowell
Daniel Lowell
Daniel Lowell

CUSTOMER
Daniel Lowell
Daniel Lowell
Daniel Lowell
Cathy Allen
Cathy Allen
Cathy Allen
Cathy Allen
Cathy Allen
Cathy Allen

42 rows selected.

SQL>

..‘::l_';-‘L..".:.,a}‘l zy L—* I

DEALER

Paul Light

Neal Pope Motorcar
Bob Motoring
Afford Auto
Buckhead Auto

Town Touring
Buckhead Auto

Town Touring
Afford Auto

Neal Pope Motorcar
Paul Light

DEALER

Bob Motoring

Bob Motoring

Paul Light

Neal Pope Motorcar
Afford Auto
Buckhead Auto

Town Touring

Town Touring
Buckhead Auto
Afford Auto

Neal Pope Motorcar

DEALER

Paul Light
Bob Motoring
Paul Light
Neal Pope Motorcar
Bob Motoring
Afford Auto
Buckhead Auto
Town Touring
Buckhead Auto
Town Touring
Afford Auto

DEALER

Neal Pope Motorcar
Paul Light

Bob Motoring

Town Touring
Buckhead Auto
Afford Auto

Neal Pope Motorcar
Paul Light

Bob Motoring

Cust Zip

30314
30314
30314
30303
30303
30303
30303
30303
30303

Dealer Zip ZIPDIFF

30342 2
30341 3
30349 5
30339 5
30305 39
30303 41
30305 9
30303 11
30339 25
30341 27
30342 28

Dealer Zip ZIPDIFF

30349 35
30349 L
30342 18
30341 19
30339 21
30305 55
30303 57
30303 0
30305 2
30339 36
30341 38

Dealer Zip ZIPDIFF

30342 39
30349 46
30342 2
30341 3
30349 5
30339 5
30305 39
30303 41
30305 9
30303 11
30339 25

30341 27
30342 28
30349 35
30303 0
30305 2
30339 36
30341 38
30342 39
30349 46

er. Further reproduction prohibited without permissionyaaw,

Using SQL 1o Develop Database Query Proficiency 135

FIGURE 12
Modified SQL Code Used to Determine Minimum Postal Code Differences Across All Dealers

SAL> SELECT r.ReferrallD, MIN(ABS(c .PostCode-d.PostCode)) AS MinZipDiff
"2 FROM Customer c, Dealer d, ReferralToDealer r

3 UWHERE c.CustomerID = v.CustomerID

4 GROUP BY r.ReferrallD

5 ORDER BY r.ReferrallD ASC

6 [/

REFERRALID MINZIPDIFF

7 rows selected.

Case Question 3: For each referral, determine whether the referred dealer
corresponds to the minimum postal code difference.

This question is the final case question involving hands-on querying. and asks students
to compare the existing difference in postal codes from Part 2. Question | with the minimum
possible postal code ditference for cach referral from Part 2, Question 2. There are several
possible approaches to addressing the question.

The solution 1 present here requires that students first create a new table from the
results of the previous query in Part 2. Question 2. The advantage to this approach, besides
allowing you to introduce sub-queries. is that this allows students to name the new table
and avoids having to write a much more complicated sub-query later on. Figure 13 illus-
trates how to create a table from the results of the previous query.

FIGURE 13
SQL Code Used to Save Minimum Postal Code Differences as a New Table

SQL> ed
Wrote file afiedt.buf

CREATE TABLE MinDiff AS
SELECT r.ReferrallD, HIN(ABS(c.PostCode-d.PostCode)) AS MinZipDiff
FROM Customer c, Dealer d, ReferralToDealer v
WHERE c.CustomerID = r.CustomerID
GROUP BY r .ReferrallD
6* ORDER BY r.ReferrallD ASC
sqQL> /

VEWN -

Table created.

Jowrnal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

136 Blankley

In this query, I begin with the CREATE TABLE command. followed by the name |
wish to give to the new table—in this case “"MinDiftf.” Rather than following the command
with the new fields and data types—all the data definition commands discussed carlier—I
follow it with “"AS.” and then the query from Part 2, Question 2 above. The entire SELECT
statement becomes, in effect, a second query within the original query. a sub-query. Sub-
queries may be used in the SELECT statement, following the FROM statement, or in the
WHERE statement as well. Oracle always evaluates the sub-query first, then the host query.

In this case, the SELECT statement and the other commands in the sub-query generate
results having two fields, the referral id, and the calculated field representing the minimum
possible differences in dealer/referral postal codes called MinZipDiff. Once those results
are generated, Oracle then executes the CREATE TABLE command. which takes those
results and creates a new table named “MinDift™ from them.

The next step is to reproduce the results from Part 2, Question I, and then join the
tables used in generating those results to the newly created MinDitf table. Because the
MinDiff results (the results from Question 2) have been saved to a new table, they can now
be referenced easily. Figure 14 illustrates the query and results that satisfy the requirements
for Question 3.

The SELECT statement requests the Referralld field from the ReferralloDealer table,
the dealer name from the Dealer table, then calculates the existing difference between
customer and dealer postal codes, naming the calculated tield “ZipDiff.” The next selection
is the MinZipDiff ficld from the newly created MinDiff table, followed by another calcu-
lation of the difference between the existing zip code difference (ZipDiff) and the Min-
ZipDiff field. which is given the alias “ZipResult.” The FROM statement lists the four
tables from which the data arc drawn with their table aliases, and the WHERE statement
joins the four tables on their common fields.

The results indicate that there is no ditference between the minimum possible postal
code differences and the existing postal code differences for cach referral. Apparently. the

FIGURE 14
SQL Code and Output Showing Comparison of Actual and Possible
Minimum Postal Code Differences

SQL> ed
Wrote file afiedt.buf

SELECT r.ReferrallD, d.Name AS Dealer, ABS(c.PostCode - d.PostCode) AS 2ipDiff,
m.MinZipDiff, ((c.PostCode-d.PostCode) - m.MinZipDiff) AS ZipResult
FROM ReferralToDealer r, Customer c, Dealer d, MinDiff m
WHERE r.CustomerID=c.CustomerID AND d.DealerID = r.DealerID
5% AND m.ReferrallD=r .ReferrallD
sqQL> /

FWON =

REFERRALID DEALER 2IPDIFF MINZIPDIFF ZIPRESULT
10345 Paul Light 2
10352 Buckhead Auto 9
10363 Bob Motoring 1"
18379 Touwn Touring ()
10382 Paul Light 2
10394 Buckhead Auto 9
16407 Town Touring 0

7 rows selected.

Journal of Information Systems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

Using SQL 1o Develop Database Query Proficiency 137

auto manutacturer is abiding by the agreement to refer customers to the nearest dealership,
at least when the nearest dealer is defined by difference in postal codes.

II1I. CONCLUSION

This paper offered a follow-up note to BKJ's case focused on having students develop
queries verifying mutual compliance between an auto manufacturer and its dealers. The
original case presents query strategies and solutions developed for MS Access using a QBE
approach. This follow-up note offers query strategies and solutions developed for Oracle
using SQL-Plus. Teaching the case using SQL rather than a QBE approach makes it a more
challenging assignment for students, but it also offers several distinct pedagogical benefits:
it reinforces the logic necessary to developing successful queries. it exposes students to the
most widely-used business database language. it illustrates for students the data definition,
manipulation, and querying capabilities inherent in SQL. and it acquaints students with a
major database management system actually used for large-scale. robust accounting
systems.

REFERENCES

Borthick, A. F. 1996. Helping accountants learn to get the information managers want: The role of
the accounting information systems course. Jowrnal of Information Systems 10 (Fall): 75-85.

. D. R. Jones, and R. Kim. 2001. Developing database query proficiency: Assuring compliance
for responses to website referrals. Jowrnal of Information Systems 15 (Spring): 35-56.

Gelinas. U. 1.. S. G. Sutton, and J. E. Hunton. 2005. Accounting Information Svstems. 6th edition.
Mason. OH: Thomson/Southwestern.

Romney. M. B.. and P. J. Steinbart. 2003. Accounting Information Svstems. 9th edition. Upper Saddle
River. NJ: Prentice Hall.

Jowrnal of Information Svstems, Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,

